A neuronal form of the cell adhesion molecule L1 contains a tyrosine-based signal required for sorting to the axonal growth cone.
نویسندگان
چکیده
The neural cell adhesion molecule L1, which is present on axons and growth cones, plays a crucial role in the formation of major axonal tracts such as the corticospinal tract and corpus callosum. L1 is preferentially transported to axons and inserted in the growth cone membrane. However, how L1 is sorted to axons remains unclear. Tyr1176 in the L1 cytoplasmic domain is adjacent to a neuron-specific alternatively spliced sequence, RSLE (Arg-Ser-Leu-Glu). The resulting sequence of YRSLE conforms to a tyrosine-based consensus motif (YxxL) for sorting of integral membrane proteins into specific cellular compartments. To study a possible role of the YRSLE sequence in L1 sorting, chick DRG neurons were transfected with human L1 cDNA that codes for full-length L1 (L1FL), a non-neuronal form of L1 that lacks the RSLE sequence (L1DeltaRSLE), mutant L1 with a Y1176A substitution (L1Y1176A), or L1 truncated immediately after the RSLE sequence (L1DeltaC77). L1FL and L1DeltaC77, both of which possess the YRSLE sequence, were expressed in the axonal growth cone and to a lesser degree in the cell body. In contrast, expression of both L1DeltaRSLE and L1Y1176A was restricted to the cell body and proximal axonal shaft. We also found that L1DeltaRSLE and L1Y1176A were integrated into the plasma membrane in the cell body after missorting. These data demonstrate that the neuronal form of L1 carries the tyrosine-based sorting signal YRSLE, which is critical for sorting L1 to the axonal growth cone.
منابع مشابه
Evidence for the Involvement of Kif4 in the Anterograde Transport of L1-Containing Vesicles
In this study we present evidence about the cellular functions of KIF4. Using subcellular fractionation techniques and immunoisolation, we have now identified a type of vesicle that associates with KIF4, an NH(2)-terminal globular motor domain kinesin-like protein. This vesicle is highly concentrated in growth cones and contains L1, a cell adhesion molecule implicated in axonal elongation. It l...
متن کاملThe neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway.
Cell-cell interactions mediated via cell adhesion molecules (CAMs) are dynamically regulated during nervous system development. One mechanism to control the amount of cell surface CAMs is to regulate their recycling from the plasma membrane. The L1 subfamily of CAMs has a highly conserved cytoplasmic domain that contains a tyrosine, followed by the alternatively spliced RSLE (Arg-Ser-Leu-Glu) s...
متن کاملPii: S0301-0082(01)00017-x
During development of the nervous system, neurons extend axons over considerable distances in a highly stereospecific fashion in order to innervate their targets in an appropriate manner. This involves the recognition, by the axonal growth cone, of guidance cues that determine the pathway taken by the axons. These guidance cues can act to promote and/or repel growth cone advance, and they can a...
متن کاملL1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1
Dynamic regulation of the cell surface expression of adhesion molecules is an important mechanism for controlling neuronal growth cone motility and guidance. Clathrin-mediated vesicular internalization of L1 via the tyrosine-based endocytosis motif YRSL regulates adhesion and signaling by this Ig superfamily molecule. Here, we present evidence that tyrosine-1176 (Y1176) of the YRSL motif is pho...
متن کاملRecycling of the cell adhesion molecule L1 in axonal growth cones.
The cell adhesion molecule (CAM) L1 plays crucial roles in axon growth in vitro and in the formation of major axonal tracts in vivo. It is generally thought that CAMs link extracellular immobile ligands with retrogradely moving actin filaments to transmit force that pulls the growth cone forward. However, relatively little is known about the fate of CAMs that have been translocated into the cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 10 شماره
صفحات -
تاریخ انتشار 1998